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SYNOPSIS 

Previous publications have demonstrated that when “living” anionic polymerizations are 
carried out in continuous reactors under forced periodic operation of the feed flows then: 
( a )  In the absence of impurities and within certain limitations, it is possible to produce 
polymers with any prespecified values of the number-average chain length, the polydispersity 
and the polymer production; and (b)  even small concentrations of impurities in the monomer 
feed, drastically inhibit such a possibility. In this work, the optimal periodic control problem 
has been reformulated, including the presence of impurities. In all cases, the flexibility of 
the control is reduced with respect to the impurities-free case. 

INTRODUCTION 

Consider a “living” anionic homopolymerization 
carried out in a continuous stirred-tank reactor 
(CSTR), and operated in the steady state (SS). 
When a deactivating impurity is introduced with 
the monomer feed, and for all other parameters con- 
stant, the produced polymer exhibits the following 
characterstics’ : ( a )  the number-average chain 
length p, and the weight-average chain length p w  
decrease monotonically as the impurities concen- 
tration is increased; and ( b )  under ideal conditions, 
a Schulz-Flory MWD (with a fixed polydispersity 
D, = p , / p ,  E 2)  is observed. 

In Part I1 of the series,2 it was theoretically shown 
that (within certain limitations) polymers with any 

prespecified average values of p,, D,, and the poly- 
mer production z could be produced through periodic 
oscillations of the initiator and the monomer solu- 
tions feed flows. However, in Alassia et al.’, it was 
demonstrated that such flexibility could be dramat- 
ically reduced by even small quantities of impurities 
in the monomer feed. In this work, the optimal pe- 
riodic control problem is reformulated, for a more 
complex system model that includes impurities. 

PROBLEM STATEMENT 

The System 

Consider an anionic homopolymerization carried out 
in an isothermal and ideally stirred reactor, with the 
following reaction mechanism: 

I + M ~ N ~  (initiation) ( l a )  

N, + M N,,, ( j  = 1,2,  - ) (propagation) (1b) 

I + K ~ I K  (initator deactivation) ( I d )  

k 
Nj + K 4 P, ( j  = 1, 2, - - - ) (termination) (1c) 

where I, M, Nj, K, Pi, and IK, respectively, represent 
the initiator, the monomer, the “living” polymer of 
chain length j ,  the impurity, the deactivated poly- 
mer, and the deactivated initiator. 

Assume the previous mechanism to be carried out 
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in an homogeneous CSTR, and that the monomer 
and all polymer species have the same density. Then, 
from the basic mass balances presented in Alassia 
et al.,’ the following state model may be derived: 

- X , ( t )  - k,,[K(t)]Xo(t) 
+ f M ( t )  
V 

where [ ] indicates molar concentration, V is the 
constant reactor volume, fI and fM are the flows of 
the initiator solution and the monomer solution, re- 

spectively, the superscript f indicates feed stock 
condition, Xi = C ji[N,] ( i  = 0, 1, 2) are the first 
three moments of the number chain length distri- 
bution IN,] V S . ~ ,  and wi = Cj’[Pj] ( i  = 0, 1, 2)  are 
the first three moments of the number chain length 
distribution [ Pj] vs. j .  

Several variables may be derived from the model 
of eqs. ( 2 ) .  For example, the instantaneous number 
average chain length and polydispersity of the total 
polymer in the reactor may be found through 

The same variables for the “living” polymer fraction 
are 

and analogous expressions for pn9d ( t ) and D n , d  ( t ) 
may be written, in relation to the deactivated poly- 
mer fraction. Two definitions for the instantaneous 
polymer production (in mass per unit time) are pos- 
sible. One considers only the polymer leaving the 
reactor, which may be calculated from: 

where M, is the monomer molecular weight. The 
other also considers the instantaneously accumu- 
lated polymer inside the reactor as follows: 

Equations (2e) , (2h) , ( 7 )  and (8) finally yield 

When the feed flows are periodic functions [ i.e., 
fr(t) = f ~ ( t  + T,) andfM(t) = f ~ ( t  + T,), where Tp 
is a fixed period of oscillation] , then all reactor vari- 
ables such as [ I ( t ) l ,  [ K ( t ) l ,  X i ( t ) ,  wi(t), p n ( t ) ,  
and zi(t) will all eventually become periodic, and 
of the same period. The quality of a polymer ob- 
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tained under periodic operation is represented by 
the average properties of the accumulated effluent 
along an integer number of periods of oscillation. 
We shall indicate these properties by the super- 
script *. The average moments of the “living” and 
deactivated polymer fractions may be calculated 
through similar expressions. For example, in the 
latter case, 

Then, the average values of the number-average 
chain length and the polydispersity are obtained 
from 

The average polymer production per unit time 
under periodic operation z may be calculated from 

Similarly, the average conversions TJ and TJ L of ini- 
tiator and monomer are respectively given by 

t+Tp 

[ f I ( T )  + f M ( T ) l  [ A O ( T )  + 0 0 ( 7 ) 1  d7‘ 
.& 

Note that, in eq. (14) ,  only the conversion of ini- 
tiator into polymer has been considered. 

The Optimal Periodic Control Problem 

The scalar functional to be minimized is written as 
the sum of three terms, each consisting of deviations 

from the desired values of p; , D:  , and z (repre- 
sented by superscript d )  , as follows: 

[ z - z ~ ] ’  (16) +- w3 
[ z d I 2  

where w1, wp, and w3 are adjustable weights. 
The aim is to find two periodic functions fI ( t )  

and f M (  t )  such that J g 0. To this effect, the ap- 
proach developed in Frontini et al.’ can be applied 
to the expanded system of eqs. ( 2 )  ; and the resulting 
equations are presented in the Appendix. For a fixed 
period of oscillation, the periodic control policy is 
iteratively calculated, starting from low-amplitude 
sinusoidal perturbations, around a chosen optimal 
SS condition. 

Indicating any possible SS by the superscript s ,  
the optimal SS is that which minimizes the func- 
tional of eq. ( 16) ; but with D :  , p i  and z replaced 
by D “ ,  pcLs,, and z s ,  respectively. Since E 2 for 
any possible SS, an optimal SS is such that p i  
= pLd, and zs = z d .  This condition may be found by 
appropriate selection of the design and operational 
inputs V , f M , f i ,  [ M ’ I ,  [ I f ] ,  and [ K ’ I .  

The period of oscillation exerts a profound influ- 
ence on D,* . Thus, Tp must be adequately selected, 
prior to minimizing J .  This parameter and the phase 
shift T between the sinusoidal feed flows proposed 
as initial perturbations for the iterative algorithm 
may be simultaneously determined through the sen- 
sitivity analysis technique suggested in Frontini 
et a1.’ 

The direct extremizations ( i.e. maximization and 
minimization) of D,* help in determining an “un- 
restricted” range for the average polydispersity. In 
general, the feasible range for D,* in the “restricted” 
J functional constitutes a subset of the first. A lower 
polydispersity than the limit determined by min 
D:  may be possibly found if the polymerization is 
carried out in a batch reactor. Ideally, Poisson 
MWD’s with Dn E 1 are obtained in the case of non- 
terminated batch polymerizations with instanta- 
neous initiation. Under the presence of impurities, 
the low molecular weight tail of the dead polymer 
that builds up along a batch polymerization, con- 
siderably broadens the final MWD.4 With slow ini- 
tiation with respect to propagation, the resulting 
Gold MWD is also wider than the Poisson MWD. 
It may be useful to compare the average polydis- 
persity obtained through min D:  , with the polydis- 
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persity observed at the end of an equivalent batch 
polymerization. 

Except for Df,  the other two specifications are 
already reachable in the SS. For this reason, the 
problem of min J with D f  < 2 is essentially equiv- 
alent to that of min D: ; and the problem of min J 
with Df > 2 is equivalent to that of max 0:. Fur- 
thermore, identical or nearly identical combinations 
of parameters T and Tp are to be expected for these 
two classes of problems.' 

The optimization procedure may be summarized 
as follows: 

1. From a global SS analysis, select an optimal 
SS that provides acceptable values for pf 
= pk and zd = 2. 

2. Through the sensitivity analysis, determine 
the best combinations for the period of os- 
cillation Tp and the phase of the initial si- 
nusoidal perturbations T, in order to start 
the iterative procedures of max D: and min 
D: , from the optimal SS. 

3. Extremize D: ,  and select some feasible 
Df.  (In general, values of Df either above or 
below the SS value of 2 will be possible.) For 
all optimal periodic control calculations, the 
amplitudes of the initial perturbations were 
adopted 0.02 of their optimal SS values. 

4. Having specified J, apply the sensitivity 
analysis again, to find T and Tp for this func- 
tional. 

5. Minimize J as follows: ( a )  Apply the initial 
sinusoidal perturbations to the system model 
of eqs. (2) ; (b)  solve the costate eqns (A.14) - 
(A.22); (c) improve the controls through eqs. 
(A.9)-(A.10) and (A.23)-(A.24); ( d )  solve 
the state equations ( 2) ; and repeat steps (b)  - 
( d )  until no significant improvement in J is 
observed. 

Polydispersity Maximization by Blending 
of Two Schulz-Flory Distributions 

As we shall see below, impurities introduce upper 
and lower bounds in the range of obtainable molec- 
ular weights, thus inhibiting the production of high 
polydispersity polymers. If the CSTR is operated 
for long time intervals at a bound, then a Schulz- 
Flory MWD will be produced during such intervals. 

In this section, the increase in polydispersity by 
mixture of two Schulz-Flory distributions will be 
investigated. Assume two polymer components with 
the following weight chain length distributions: 

j Polymer 1: q l (  j)  = 7 exp 
I.r nl 

( j  = 1,2 ,3 ,  - - .) (17) 

j Polymer 2: q 2 ( j )  = 2 exp 
p 112 

( j  = 1,2 ,3 ,  * - * )  (18) 

Callingy the weight fraction of Polymer 1, the weight 
chain length distribution of the total polymer results: 

Replacing eqs. (17) and (18) in eq. (19), and this 
in turn into pn = C [ q ( j )  / j ]  -', the number average 
chain length of the final polymer yields 

Similarly, from eqs. ( 17) - ( 19) and p w  = C [ jq  ( j)  1, 
one may obtain 

From eqs. (20) and (21 ) , the following expression 
for D, may be derived 

For fixed values of pnl and pn2, D,(y) represents a 
parabola that crosses through points (0, 2) and ( 1, 
2), and exhibits a maximum at y = 0.5. Furthermore, 
this maximum may be obtained from 

and the corresponding average molecular weight 
through 

(24) 

The above result is in accord to Ref. 5, where it 
was proven that D, is maximized when equal weights 
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of two monodisperse polymers, selected at  the limits 
of any given fixed molecular weight range, are 
blended together. 

THE SIMULATED EXAMPLE 

Consider, as in Refs. 1, 2, and 6, the polymerization 
of isoprene in n-heptane with n-butyllithium as ini- 
tiator at 25”C, together with the following data: V 
= 0.9 dm3; ki = 21.47 dm3/g mol h; kp = 4284 dm3/ 
g mol h; k,, = k,, = 40,000 dm3/g mol h; [ K’] = 0.005 
g mol/dm3; and [M’] = 6 g mol/dm3. Note that 
although ki and kp have been taken from the liter- 
ature, the termination constants were arbitrarily 
assigned. Also, [K’] is about 1 order of magnitude 
lower than the experimental value assumed in Alas- 
sia et aL4 

Steady-State Analysis 

For the given system and the following constant feed 
rates, f f  = f b  = 0.5 dm3/h, Figure 1 illustrates a 
set of possible SS conditions. The output variables 
are represented vs. a range of stock initiator con- 
centrations [ I f ] ,  and for three different impurities 
concentrations in the monomer feed [ Kf 1. All curves 
start a t  a small positive value of [ 1’1, because no 
polymer is obtained with [ I f ]  = 0. The variable LS 
= A;/( AS, + w ; )  represents the “living” molar frac- 
tion of the total polymer. The following general 
comments can be made: 

As expected, 0: 2 2 for any inputs combi- 
nation. 
For [K‘] = O,thenz‘,qf,vh,andL”arehigher 
than when impurities are present; and pk is 
unbounded and monotonically decreasing. 
For [ K’] > 0, then: ( a )  p i  is upper-bounded 
(with reduced maxima as [ Kf ] is increased), 
and lower-bounded (a t  the low limit of the 
initiator concentration); and ( b )  for high 
initiator concentrations, all “controlled” 
variables (pS,, D i ,  and z “ ) ,  converge to the 
impurities-free case. 

Consider Figure 1 ( a ) ,  a t  the chosen concentra- 
tion [K’] = 0.005 mol/dm3. At the maximum, p i  
E 825 and ff[I’] fL[K’],  because k,, & ki and 
the added initiator moles are enough to “scavenge” 
practically all impurities. At very low initiator con- 
centrations, pS, cannot be reduced below E 130. Note 
that if one aimed at  maximizing D, by mixture of 
two SS polymers in the range 0 < [ I f ]  < [If],,,, 

then equal weights of pnl = 130 and p,, = 825 would 
be required; and according to eq. (23 ) , D,,,, = 4.25. 
This relatively low polydispersity is an indication 
of the inflexibility introduced by the impurities. 

In summary, the following may be stated: 

1. 

2. 

3. 

In the SS, and presumably under periodic 
operation too, the impurities severely restrict 
the feasible ranges of pf and Of. 
In the interval 0 < [ I f ]  < the SS 
polymer production and monomer conversion 
are intolerably low. In the range [ I’]max < [ 1’1 
< a, z s ,  and vb are acceptable, but the ini- 
tiator conversion 7s is low. (Note, incidentally 
that functional J does not penalize low values 
ofvl: or q;). 
The SS analysis assumed constant feed flows, 
but variable initiator stock concentrations 
[ I f ] .  During the periodic operation, [ I f ]  is 
held constant while f1 and f M  are varied. In 
both cases, however, similar changes in the 
reagent concentrations [ K] , [I] ,  and [MI are 
induced. 

Table I indicates the two S S s  that were finally 
selected as starting points for the optimization 
studies. Such values are also indicated in Figure 1. 
Steady-state B is technologically more interesting, 
because it involves larger values of p i ,  z s ,  v f ,  and 
v&. Steady-state A was included to investigate the 
more abnormal situation, where increases in [ I f ]  
generate also increases in p i .  

The Batch Polymerization Limit 

The model of eqs. ( 2 )  may be utilized to simulate a 
batch polymerization as follows: adopting fI ( t )  
= fM ( t )  = 0, assuming a set of initial conditions 
[I(O)],  [M(O)],  and [K(O)] for the reagent con- 
centrations and taking Xi (0 ) = wi (0 ) = 0 for i = 0, 
1, 2. 

Batch simulations corresponding to the optimal 
SSs  indicated as A and B in the previous section 
were implemented. For both SSs,  identical flow rates 
were adopted for fI and fM. Therefore, the initial 
concentrations can be taken as one half of their cor- 
responding stock concentrations, as indicated in the 
first three rows of Table 11. 

Call tf the final batch time required to reach a 
constant model output. This parameter, together 
with some of the reactor outputs, are also indicated 
in Table 11. The initiator and the monomer conver- 
sions are defined by v I ( t )  = { [I(O)] - [ I ( t ) ] } /  

andqM(t) = { [M(0)1-  [M(t ) l} / [M(O)I ,  
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[ I f ]  
Figure 1 SS outputs for different combination of [ 1’1 and [ K’] . 

respectively. Note that the final polydispersity for 
Batch “A” is above the SS value of 2. This is an 
indication of potential difficulties if narrow polymers 
associated with SS “A” were required. 

are represented vs. the frequency of oscillation 
( =  27r/Tp), with the phase shift T as parameter. 
The “best” ( Tp,  T ) combinations are those which 
produce the highest positive and negative variations 
in A D  ,* , and the finally selected values are presented 

Extremizations of the Average Polydispersity in the first two rows of Table 111. Then, the extrem- 
izations of D,* provide the “optimal” results shown 

Consider the minimization and maximization of 
D,* about the previously defined optimal steady 
states A and B, to obtain feasible ranges for Df. 
Figures 2 ( a )  and ( b )  illustrate the sensitivity anal- 
ysis required to select appropriate Tp and T param- 
eters for such calculations. The variations of D,* 
due to small sinusoidal perturbations of fI and f M  

in the last five rows of Table 111. For both starting 
points, D:  is bounded between around 1.5 and 7.5, 
whereas p,* and z vary with respect to their original 
SS values. Note that the final average polydispersity 
for min D,* from SS “A” is below the corresponding 
batch polydispersity of Table 11; and the opposite is 
verified for min D:  from SS “B.” 
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Table I The Chosen Optimal SSs 

Optimal 
SS “A” 

Optimal 
SS “B” 

0.003 mol/dm3 
6 mol/dm3 
0.005 mol/dm3 

0 .OOOO 16 mol/dm3 
2.754 mol/dm3 
0.001038 mol/dm3 

2.00 
280 

15.7 g/h 
0.579 
0.083 
0.026 

0.010 mo1/dm3 
6 mol/dm3 
0.005 mol/dm3 

0.000570 mol/dm3 
0.3512 mol/dm3 
0.000027 mol/dm3 

2.00 
680 

170 g/h 
0.777 
0.883 
0.505 

Figures 3 ( a )  - ( j  ) illustrate the optimal periodic 
profiles for the maximization and the minimization 
of D,*, from steady state A. The following is ob- 
served 

1. For min D: , the reagent feeds tend to high 
pulses, out of phase within each other, thus 
resembling a semibatch polymerization. 

2. For max D,*,  the number average chain 
length of the instantaneously produced poly- 
mer pn,[( t )  is most of the time fixed at a low 
bound, but also exhibits a high peak during 
a short interval. It is easily shown that the 
low molecular weight polymer corresponds to 
the left limit of curve [ K’] = 0.005 in Figure 
1 ( a ) .  Since the peak of fI ( t )  is large enough 
to scavenge all impurities, the unrestricted 
[ K’] = 0 case is approached while high mo- 
lecular weight material is being produced. 

3. In the max D,* solution, the instantaneous 
production zi ( t ) indicates that the polymer 
mass generated during the interval when the 
high molecular weight peak of p n , l ( t )  is ob- 
served is nearly identical to the polymer mass 
produced in the remaining fraction of the pe- 
riod. Thus, the optimal y = 0.5 solution of 
eqs. (22)  - (24) seems to be extrapolable to 
the present more complicated situation, 
which involves a large variety of high MWDs. 

Desired Polymers and Functionals 

The selection of = 1.5 and 4.0 for each optimal 
SS determines the specifications of the first three 
rows of Table IV. Call JA,.., JA~~, , ,  JB,.. and JB,~, 
the corresponding functionals. In all cases, the 

weights wl, w2, and w3 were taken equal to 1. Note 
that since for Amin is below the “unrestricted” 
bound of 1.52, such specification will be a priori un- 
reachable. 

The sensitivity analysis for each J functional is 
presented in Figures 2 (c )  - ( f ) , and the selected pa- 
rameters are indicated in the fourth and fifth rows 
of Table IV. As expected, the same combinations 
for Tp and T were adopted in the cases of max 
D ,* , min JA,, , and min JBmaX , but small differences 
appear for min D ,* , min JArni,, and min J B m i n .  

Optimal Periodic Control 

Figures 4 and the last three rows of Table IV sum- 
marize the optimal periodic control results. Note the 
following: 

1. 

2. 

3. 

4. 

Table 

Although the specifications of polymers A,,, 
and Bmin are accurately met, deviations ap- 
pear for polymers Amin and B,,, . 
The final average polydispersity of Amin is 1.95 
instead of 1.5, in spite of the fact that the 
periodic forcing resembles a semibatch op- 
eration. In this case, the restriction imposed 
by the production term determines that the 
instantaneously produced polymer may be 
defined by a Schulz-Flory MWD of a virtually 
constant pn ( t )  . This product is similar to that 
observed at  the left bound of Figure 1 ( a ) ,  for 
[K’] = 0.005. 
The average polydispersity of B,,, is 2.85 in- 
stead of 4.0, because (unlike the case of max 
D,* for steady-state B)  the controls were un- 
able to surpass the upper bound of p n ( t ) ,  
through an excess of initiator. In this case, 
the term of pn constitutes the main restric- 
tion. 
When a polymer with D f  < 2 is required (i.e., 
for min D,* SSs  A or B, min J A m i , ,  and min 

I1 Batch Polymerization Results 
~ 

Batch “A” Batch “B” 

0.0015 g mol/dm3 
3.0 g mol/dm3 
0.0025 g mol/dm3 

1.0 h 
2.34 
221 
1 
0.051 
0.000 

0.005 g mol/dm3 

0.0025 g mol/dm3 

0.75 h 
1.34 
814 
1 
1 
0.77 

3.0 g mo1/dm3 



3188 VEGA, FRONTINI, AND MEIRA 

a )  
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Figure 2 Sensitivity analysis for the selection of T,, and the phase T of the initial 
sinusoidal perturbations: (a, b )  variations of 0: ; (c-f) variations of the four final 
functionals. 

JBmim),  the average production under peri- 
odicity conditions (2) results in a value higher 
than the original optimal SS value (2)). It 
seems unreasonable to force the system to 
reduce average production; therefore, the 
production term should not have been in- 
cluded in the above-mentioned J functionals. 

DISCUSSION 

Even small amounts of impurities have a profound 
influence on the polymer obtained through “living” 
anionic polymerizations carried out in periodically 
forced CSTRs.’ Therefore, such impurities have to 
be taken into consideration for a realistic optimal 
periodic control calculation. This implied the nu- 
merical solution of 18 differential equations (be- 

Table I11 Extremizations of D: 

From Optimal SS From Optimal SS 
“A” “B” 

max min max min 
0: 0: 0; 0: 

Tp (h) 20 0.14 20 0.5 
T TP /2 TJ2.5 Tp/2 0 

0: 7.71 1.52 7.37 1.44 
P: 302 342 303 700 
z (dh) 10.0 182 36.2 176 

s: 0.50 0.50 0.35 0.84 
VEFr 0.05 0.12 0.33 0.55 
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min D: (SS"A"):--- 
max Dt (SS "A" 1 : - 

\ I 1 

j )  
' o o o p /  ;wl 

_-- - -_--_-' - 
0 

0 0 5  1 0 0.5 1 
t/Tp t/Tp 

Figure 3 
optimal SS "A". 

Optimal profiles for the maximization and minimization of 0,' around the 

tween states and costates) , instead of 10 for the im- 
purities-free model of Refs. 2 and 6. However, the 
same theoretical approach developed for the simpler 
case of Ref. 2 could be directly applied to the present 
more comprehensive model. 

Impurities severely affect the advantages of pe- 
riodic operation, especially when broad MWDs are 

Table IV Products Specifications, Required 
T, T, Parameters, and Optimal Periodic 
Control Results 

Polymer Polymer Polymer Polymer 
Amax Amin Bmax %in 

0: 4.0 1.5 4.0 1.5 
Pd, 280 280 680 680 
zd k / h )  15 15 170 170 

T, (h) 20 0.11 20 0.5 
T TP/2 TP/2 TP/2 0 

0,' 4.0 1.95 2.85 1.5 
P,' 285 230 530 680 
z (g/h) 15.0 17.0 150 175 

required. For the simulated isoprene polymerization, 
the range between min D: and max D,* is narrowed 
from 1.13/12.7 for the impurities-free case,2 to about 
1.5/7, when [ K f ]  = 0.005 mol/dm3. This is due to 
the appearance of bounds in the average molecular 
weights of the produced polymer. Also, when the 
initiator feed is below a critical value (where prac- 
tically all impurities are "scavenged"), and inverse 
behavior from the control point of view is observed, 
in the sense that increases in the monomer to ini- 
tiator concentration reduce the average molecular 
weight. The global SS analysis proved valuable for 
selecting appropriate optimal SS conditions, and 
also for detecting potential difficulties associated 
with bounds or abnormal behaviors. 

The maximization of D,* involves large periods 
of oscillation, and the alternating generation of high 
and low molecular weight material. To adequately 
interpret some observed periodic solutions, the 
maximization of average polydispersity via blending 
of two Schulz-Flory distributions has been inves- 
tigated. In general, polydispersity is maximized when 
equal weights of high and low molecular weight ma- 
terial are added together. 
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Figure 4 Optimal profiles for the minimization of JAmin, JAmax, JBmin, and JB, . 

With periods in the order of the average residence 
time, the periodic operation allows the production 
of polymers with polydispersities below that of the 
SS; and the forcing can resemble a semibatch op- 
eration. Also, when impurities are present, a batch 
polymerization does not necessarily produce the 
narrowest possible MWD. In general, impurities are 
not a great obstacle for synthesizing polymers with 
D: < 2 because a polymer with an approximately 
constant average molecule weight (and of a value 
close to the apriori reachable optimal SS) is required 
in this case. 

The production term in eq. (16) is unreasonable 
if its corresponding SS value is below the average 
periodic production. Also, the initiator consumption 

is not even indirectly restricted in eq. ( 16), and this 
may lead to technologically unrealistic situations. 
Both inconvenients could be simultaneously at- 
tacked* by replacing the production term for 
{ ~ 3 1 9 1  - 112 + wq[ q& - 11'1, where w3 and w4 are 
weights, and q: and q& are defined by eqs. (14)  and 
( 15) .  This would indirectly impose a cost term on 
the controls f~ ( t ) and f~ ( t )  , but the ideal solution 
would no longer imply that J E 0. 

The investigated isoprene polymerization in- 
volved slow initiation with respect to propagation 
and slow propagation with respect to termination. 
For this reason, the polymers produce in batch po- 
lymerizations were much wider than Poisson dis- 
tributions (making min D: difficult) ; and very high 
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molecular weight material was impossible to obtain 
(making max D,* difficult). For comparison, the 
styrene polymerization in a benzene/THF mixture 
a t  25°C with n-butyllithium and the following data7 
was also investigated V = 0.9 dm3; ki = 1,260,000 
dm3/g mol h; kp = 126,000 dm3/g mol h; k,, = k,, 
= 40,000 dm3/g mol h; [M’] = 0.6 mol/dm3; [ I f ]  
= 0.003 mol/dm3; [K’] = 0.0005 mol/dm3; and 
f !  = f b  = 0.5 dm3/h. In this case, the SS analysis 
indicates that the functions p i  vs. [ I f ]  are mono- 
tonically decreasing and similar to the “unre- 
stricted” [ K’] = 0 isoprene case, but starting from 
finite maxima at  the limit of [I’ ] --* 0. The extrem- 
izations of D,* indicate a greater flexibility, with the 
average polidispersity ranging from 1.06 to 43. The 
optimal periodic control also proved simpler and 
qualitatively equivalent to the isoprene polymeriza- 
tion with [K’] = 0. This is because impurities are 
rapidly “scavenged” by the initiator or the “living” 
polymer. 

Finally, the importance of accurate estimations 
of the intervening parameters should be emphasized. 
For example, the termination constants are difficult 
to estimate, but their relative values with respect to 
ki and may dramatically alter the optimal profiles. 
Also, the feed stock concentrations [ K’ ] and [ I f ]  
are normally difficult to measure; and to his effect, 
precalibration runs may be ne~essary.~ The rela- 
tively high parametric sensitivity of the optimal so- 
lution with respect to the input coefficients may se- 
verely restrict the experimental applicability of the 
proposed method, but this problem is common to 
most quantitative anionic polymerization tech- 
niques. 
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APPENDIX 

Equation (9)  may be rewritten as follows: 

( M m j 2  - zdI2 (A.1) +- w3 

( Z d l 2  

with 

( i  = 1, 2, 3 )  (A.2)  

Equations (A.1) and (A.2) may be represented 
in a more general fashion by 

where g is a nonlinear scalar function of vector j, 
x ( t )  is the state vector, f ( t )  is the control vector, 
and m is a vector of nonlinear functions. In our case, 
j = ( h ? h ! , j 3 ) T 2  x(t)  = { [ I ( t ) I ,  [ M ( t ) l ,  [ K ( t ) l ,  

f ( t )  
= { f I ( t ) ,  f M ( t ) J T ,  and mi = ( f I  + f M ) ( k i - l  + wi-1) 

with i = 1, 2, 3. Also, the model of eqs. ( 2 )  and its 
periodicity condition may be symbolized by 

A o ( t ) ,  A l ( t ) ,  A 2 ( t ) ,  wo(t), U l ( t ) ,  w z ( t ) } ’ ,  

x ( t )  = a [ x ( t ) ,  f ( t ) ]  withx(0)  = x(Tp) (A.5) 

The minimization of J as defined by eqs. (A.3) 
and (A.4) ,  and subject to the restrictions of eqs. 
(A5 ) , may be solved by first defining a Hamiltonian 

where p = (pl, p 2 ,  p3) 
through 

is a real vector calculated 

(-4.7) 

and y( t )  is the costate vector, obtained through the 
differential system 
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The extremization of H (and therefore of J )  may 
be numerically solved through a gradient technique 
that iteratively calculates the necessary controls via 
the following procedure: 

C aH 
- - (A.9) 

with c > 0. 

fined by eq. (A.7)  result: 
For the problem under study, the multipliers de- 

(Mmj2 - z d ) M m  (A.12) + 2 -  w3 
( Z d ) 2  

From the Hamiltonian, the costate equations 
provide: 
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Finally, the Hamiltonian gradients of eqs. (A.9) aH -- - P l ( X 0  + 00) + P 2 ( X 1  + 0 1 )  a f M  and (A.lO) yield 

(A.23 ) 0 1 7 8  0 2 Y S  

V V 




